MOOC Course- Regression Analysis and Forecasting - January 2017

Assignment 3

Note: All the questions in this assignment are based on the multiple linear regression model $y=X \beta+\epsilon$ where y is a $n \times 1$ vector of n observations on study variable, X is a $n \times k$ matrix of rank k with n observations on each of the k explanatory variables, β is a $k \times 1$ vector of associated regression coefficients and ϵ is a $n \times 1$ vector of random errors following $N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.
[1] Consider the multiple linear regression model $y=X \beta+\epsilon$ where y is a $n \times 1$ vector of observations on study variable, X is a $n \times k$ matrix of rank k with n observations on k explanatory variables, β is a $k \times 1$ vector of regression coefficients and ϵ is a $n \times 1$ vector of random errors with $E(\epsilon)=\mathbf{0}, V(\epsilon)=\sigma^{2} \mathbf{I}$. Suppose ϵ does not follow the normal distribution. Then which of the following statements are correct?

Statement 1: The OLSE of β remains unbiased.
Statement 2: The OLSE of β does not remain unbiased.
Statement 3 : The covariance matrix of OLSE of β remains as $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
Statement 4: The covariance matrix of OLSE of β does not remain as $\sigma^{2}\left(X^{\prime} X\right)^{-1}$.
A. Statements 1 and 4 are correct.
B. Statements 2 and 4 are correct.
C. Statements 1 and 3 are correct.
D. Statements 2 and 3 are correct.
[2] Consider the multiple linear regression model $y=X \beta+\epsilon$ where y is a $n \times 1$ vector of observations on study variable, X is a nonstochastic $n \times k$ matrix of rank k having n observations on each of the k explanatory variables, β is a $k \times 1$ vector of regression coefficients and ϵ is a $n \times 1$ vector of random errors. Assume $E(\epsilon)=\mu \neq 0, V(\epsilon)=\sigma^{2} \mathbf{I}$ and σ^{2} is known. Then $E(\hat{\beta})$ where $\hat{\beta}$ is the ordinary least squares estimator of β is
A. β
B. $\beta-\left(X^{\prime} X\right)^{-1} X^{\prime} \mu$
C. $\beta+\left(X^{\prime} X\right)^{-1} X^{\prime} \mu$
D. $\left(X^{\prime} X\right)^{-1} X^{\prime} \mu$
[3] Consider the multiple linear regression model $y=X \beta+\epsilon$ where y is a $n \times 1$ vector of observations on study variable, X is a nonstochastic $n \times k$ matrix of rank k having n observations on each of the k explanatory variables, β is a $k \times 1$ vector of regression coefficients and ϵ is a $n \times 1$ vector of random errors. Assume $E(\epsilon)=\mathbf{0}, V(\epsilon)=\Omega \neq \mathbf{I}$ where Ω is a known positive definite matrix. The covariance matrix of ordinary least squares estimator of β is
A. $\left(X^{\prime} X\right)^{-1}$
B. $\left(X^{\prime} \Omega^{-1} X\right)^{-1}$
C. $\left(X^{\prime} \Omega^{-1} X\right) X^{\prime} X\left(X^{\prime} \Omega^{-1} X\right)^{-1}$
D. $\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}$
[4] The covariance matrix of residuals based on the least squares estimation of β with n observations and k explanatory variables in a multiple linear regression model $y=X \beta+\epsilon, E(\epsilon)=\mathbf{0}, V(\epsilon)=\sigma^{2} \mathbf{I}$ under usual assumptions is
A. $\sigma^{2} \mathbf{I}$
B. $\sigma^{2} X\left(X^{\prime} X\right)^{-1} X^{\prime}$
C. $\sigma^{2}\left[\mathbf{I}-X\left(X^{\prime} X\right)^{-1} X^{\prime}\right]$
D. $n \sigma^{2} \mathbf{I}$
[5] Suppose there are 5 explanatory variables (including an intercept term) in the model $y=X \beta+\epsilon$ and $n=26$. Further, the sum of squares due to total is obtained as 300 and sum of squares due to error is obtained as 100 . The value of F-statistic in the context of analysis of variance is
A. 2
B. 2.4
C. 8
D. 10.5
[6] In the usual analysis of variance table, the estimate of σ^{2} is obtained for $n=25, k=5$ as
A. $\frac{1}{20} \times($ Sum of squares due to regression).
B. $\frac{1}{20} \times($ Sum of squares due to residuals $)$.
C. $\frac{1}{25} \times($ Sum of squares due to regression $)$.
D. $\frac{1}{25} \times$ (Sum of squares due to residuals).
[7] Consider the multiple linear regression model with $n=20$ and $k=4$ as $y_{i}=\beta_{1} X_{i 1}+\beta_{2} X_{i 2}+$ $\beta_{3} X_{i 3}+\beta_{4} X_{i 4}+\epsilon_{i}, i=1,2, \ldots, 20$. The p-values for testing the null hypothesis $H_{0}: \beta_{1}=0$, $H_{0}: \beta_{2}=0, H_{0}: \beta_{3}=0$ and $H_{0}: \beta_{4}=0$ are obtained as $0.03,0.02,0.08$ and 0.09 respectively at 5% level of significance. Then the conclusion about the presence of explanatory variables in the model is that
A. X_{1}, X_{2}, X_{3} and X_{4} remain in the model.
B. X_{1} and X_{2} remain in the model.
C. X_{3} and X_{4} remain in the model.
D. X_{1}, X_{3} and X_{4} remain in the model.
[8] Consider the multiple linear regression model $y=X \beta+\epsilon$ where $\epsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$ with $n=41$ and $k=6$ (including intercept term). If the coefficient of determination $\left(R^{2}\right)$ is 0.98 , then we can conclude at 5% level of significance about the null hypothesis $H_{0}: \beta_{1}=\beta_{2}=\ldots=\beta_{6}=0$ based on the F-statistics in connection to analysis of variance that
A. H_{0} is accepted.
B. H_{0} is rejected.
C. Nothing can be concluded.
D. Given information is not sufficient to take any decision about acceptance or rejection of H_{0}.
[9] Choose the alternative that correctly matches the statements in the columns (1) and (2) in connection with $y=X \beta+\epsilon, \epsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.

Column 1	Column 2
(I) Quantile - Quantile plot	(a) Checking of constancy of variance of ϵ_{i} 's.
(II) Plots of residuals versus fitted values	(b) Checking of variance of ϵ_{i} 's with time.
(III) Plots of residuals versus time	(c) Checking of normality of ϵ_{i} 's.
(IV) Variance inflation factor	(d) Checking of independence of explanatory variables.

A. I - d, II - c, III - b, IV- a.
B. I - c , II - b, III - d, IV- a.
C. I - c, II - a, III - b, IV- d.
D. I - d, II - c, III - b, IV- a.
[10] Choose the alternative that correctly matches the statements in the columns (1) and (2) in connection with $y=X \beta+\epsilon, \epsilon \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$.

Column 1	Column 2
(I) DW statistic	(a) Presence of first order autocorrelation.
(II) Cook's statistic	(b) Measure of performance of model for prediction.
(III) PRESS	(c) Measure of influence.

A. I - c, II - b, III - a.
B. I - a , II - b, III - c.
C. I - a , II - c, III - b.
D. $\mathrm{I}-\mathrm{b}, \mathrm{II}-\mathrm{c}, \mathrm{III}-\mathrm{a}$.

Solution to Assignment 3

Answer of Question 1 - C

Answer of Question 2 - C

Answer of Question 3 - D

Answer of Question 4 - C

Answer of Question 5 - D

Answer of Question 6 - B

Answer of Question $7-\mathrm{B}$

Answer of Question $8-\mathrm{B}$

Answer of Question 9 - C

Answer of Question 10 - C

